
JOURNAL OF COMPUTATIONAL PHYSICS 100, 384395 (1992)

A Numerical Method for Incompressible
Viscous Flow Simulation

RAMESH NATARAJAN

IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, New York 10598

Received October 30, 1990; revised June 17, 1991

We describe a numerical scheme for computing time-dependent
solutions of the incompressible Navier-Stokes equations in the
primitive variable formulation. This scheme uses finite elements for the
space discretization and operator splitting techniques for the time
discretization. The resulting discrete equations are solved using
specialized nonlinear optimization algorithms that are computationally
efficient and have modest storage requirements. The basic numerical
kernel is the preconditioned conjugate gradient method for symmetric,
positive-definite, sparse matrix systems, which can be efficiently
implemented on the architectures of vector and parallel processing
supercomputers. 0 1992 Academic Press. Inc.

1. INTRODUCTION

In this paper, we describe a numerical scheme for the
time-dependent, incompressible Navier-Stokes equations
which uses finite elements for the space discretization,
operator splitting methods for the time discretization and
specialized nonlinear optimization techniques for the solu-
tion of the discrete operator equations. This general
approach has been extensively investigated by Glowinski
and co-workers in recent years (see, for example, Bristeau,
Glowinski, and Periaux [2]; Glowinski and Le Tallec [7];
and for related stability and convergence results, Fer-
nandez-Cara and Beltran [4]), and its overall potential for
large-scale viscous flow computations can be attributed to
the following two factors: First, with the use of appropriate
matrix storage techniques and solution algorithms, the
memory requirements are modest, even for three-dimen-
sional applications. Second, the basic algorithms and
numerical kernels can be structured to take good advantage
of the architectural characteristics of high-performance
vector and parallel supercomputers.

In the first phase of this research, we have developed a
computer program for two-dimensional incompressible
viscous flow problems that differs from the previous work in
some ways, but most notably in the following two aspects.
First, we have used a discontinuous basis for the pressure,

which leads to a better approximation of the incom-
pressibility condition and permits stable solutions to be
computed to somewhat larger Reynolds numbers. In addi-
tion, this choice leads to a more efficient implementation of
a solution technique based on the augmented Lagrangian
method, as described further in Section 3. Second, we have
used the preconditioned conjugate gradient algorithm for
solving certain symmetric, positive-definite matrix systems,
rather than a Cholesky factorization method. This choice
leads to a program that is storage efficient and, with suitable
preconditioning strategies, computationally efficient as well.
In addition, the solution of these matrix systems is required
in an “inner” loop of the program, where good initial
guesses are invariably available, and this can be exploited
by the iterative conjugate gradient method for rapid con-
vergence to the solution.

The outline of this paper is as follows: Section 2 gives the
problem formulation and describes the methods used for the
time and space discretization. Section 3 contains the details
of the various nonlinear optimization algorithms used for
solving the individual discrete operator equations. Numeri-
cal experiments with some test problems are described in
Section 4. Section 5 contains a summary and identifies some
of our plans for further research.

2. PROBLEM FORMULATION AND DISCRETIZATION

I. The incompressible Navier-Stokes equations in the
primitive variable formulation are given by

all
-=vv2u-u.vu-vp+f, at

v.u=o,

(2.1

(2.2)

where u(x, t) is the fluid velocity, p(x, t) is the pressure, and
v is the inverse of the Reynolds number. We consider flows

0021~9991/92 S5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

384

INCOMPRESSIBLE VISCOUS FLOW SIMULATION 385

in a simply-connected, closed domain Q c %?‘, n = 2, 3, with
boundary X?. The boundary conditions that we admit are

U’UI, on rl, (2.3)

au
vn-pn=g, on r2,

where XJ = l-i LJ I-z, and n denotes the unit outward
normal on dQ. The boundary condition (2.4) does not
have a physical interpretation, although it appears as a
natural boundary condition for the weak form of (2.1).
Nevertheless, numerical evidence suggests that it can
be used in certain situations (such as distant outflow
boundaries) without leading to appreciable errors in the
solution. We also note that if r, = 0, then the pressure p is
defined only up to an arbitrary constant, and in this case the
boundary velocity must satisfy the compatibility condition

s II, .ndS=O. (2.5)
fl

The initial conditions on the velocity are taken in the form

4% 0) = udx), (2.6)

where II,, must be solenoidal in order for it to be an
admissible velocity field. This condition, however, need not
be enforced strictly when the primary interest is only in
the ultimate steady state that is obtained after an initial
transient. Finally, we note that in the present numerical
scheme, the pressure is always determined implicitly from
the velocity at the end of each time step, so that no initial
condition is required for it.

II. To motivate the discussion of the operator-splitting
scheme used for the time integration, we introduce a penalty
parameter r, where r % 1 and write

v . u = p/z. (2.7)

This is used to eliminate the pressure from (2.1), to obtain

au
-=vv2u-u.vu-Tv(v.u)+f. at (2.8)

With this formal manipulation, the right-hand side of (2.8)
is seen to consist of viscous and pressure correction terms
that are linear functions of the velocity and an inertial term
which is a nonlinear function. Although we do not use (2.7)
and (2.8) as a practical time-integration scheme, we note
parenthetically that algorithms that might be based on it

must take into account the following two additional factors
beyond the usual stability and accuracy requirements. First,
the pressure correction term in (2.8) must be treated
implicitly in the time-integration in order to ensure that the
updated velocity field satisfies the penalized incom-
pressibility condition (2.7) for large z. Second, for large
values of the penalty parameter, the corresponding matrix
system for (2.8) becomes quite ill-conditioned and leads to
difficulties in obtaining iterative convergence and solution
accuracy.

The time integration scheme in this paper is based on a
particular additive splitting of the three individual operators
that appear on the right-hand side of (2.8). Unfortunately,
the exact analysis of this splitting is made difficult by the
nonlinearity and by the dependence of the various terms
on the spatial derivates of the velocity. For simplicity,
therefore, we consider the following case which does not
have these complications and then extend the results that
are obtained for it to (2.8) by analogy.

Consider, therefore, the linear evolution equation

$=du+J (2.9)

where RZ’ can be written as the sum of three linear operators
&i, d2, and S$3, which do not necessarily commute with
each other. Then the scheme described below is second-
order accurate for I, = 1 - l/G, A, = ,/? - 1. For other
choices of Ai, A2 with 21, + il, = 1, the scheme is first-order
accurate. In either case, 0 is a free parameter:

U*--Un
z= [ed, +J&]u*

‘1

+ [(l --O)dl +d2] u”+f, (2.10a)
u**-.u*

A2 At
= [(l-Q&i +S!J u**

+[edl+dsdi’3]u*+f, (2.10b)

24 n+l

-**= [8d,,d3, ZPfl
;I, At

+ [(J - 0) d, + =4] u** +f: (2.1Oc)

In order to show this, we consider only the casef= 0 to
simplify the exposition; the proof for nonzero f requires
some additional algebra but uses the same methods. From
a Taylor’s series expansion for u“+’ and using (2.9), we
obtain

I+At&‘+(df)22]un+O(At)3. (2.11)

386 RAMESH NATARAJAN

NOW from (2.10a), we obtain by some straightforward
manipulations,

u* = [Z-A, At(ed~ + d3)] -l

x [Z-A1 dt((1 -e)S4i+&f*)] Un, (2.12)

and after expanding and making use of the linearity of the
operators, this can be written as

u* = [Z+ 1, At ai’ + L:(At)’ (8dI + cd;) d)] U” + O(At)3.

(2.13)

In a similar fashion, we can derive

u** = [Z+ II, At d + J;(At)’

~(1-0)d,+d~)d]u*+O(At)~ (2.14)

and

U “+‘= [Z+l, At d+I;(At)’ (RdI+d3)d] u**+O(At)3.

(2.15)

Combining (2.13 b(2.15), we obtain

24 n+ ’ = [Z+ (24 + A,) At d + (At)2 (2; + 241,)d

+ (At)2 ((2n304 + d3)

+ A;((1 - 0) &i + d2)} -01]+ O(At)3. (2.16)

The assertion then follows by noting that the O(At) terms in
(2.11) and (2.16) are identical for the 21, +1, = 1 and, in
addition, if 1, = 1 - l/G, A,= ,,& 1, then the O(At)’
terms are also identical.

This result can be heuristically extended to the time dis-
cretization of (2.8), where we now replace the penalty term
by the more exact incompressibility condition. Letting c~i,
a2 denote the quantities (2, At)-’ and (2, At)-‘, respec-
tively, the following sequence of subproblems is used to
advance the solution at each time step. First, we solve

CCIU* -evv2u* +vp*

=f+CIIU~+(i-e)vv~U~-U~.vU~, (2.17a)

V.u”=O, (2.17b)

u*=u 1 on r,, _

ev~-p*u=g-(l-e)v~
(2.17~)

on r2,

and then,

a,~**-(i-e)v~2U**+~**.~~**

=f+ ~r,~*+e~v2u*-vp*,

u**=u
1 on r,,

(2.18a)

(l-e)v~=g-ev~+p*n
(2.18b)

on r2,

and, finally,

C11U*+1-evv2u~+1+vp~+~

=f+a,u**+(i-e)vvb**-u**.vu**, (2.19a)

v.u) n+l_-j (2.19b)

U n+lzu
1 on 6,

ev au"+' --
an '

"+ln=g-(l--8)v~ on r2. (2.19~)

We note that in the subproblems (2.17) and (2.19) which
are identical in ail respects, the viscous and pressure terms
are treated implicitly. On the other hand, in (2.18), the
viscous and inertial terms are treated implicitly and the
incompressibility condition is not enforced. The advantage
of this formulation is the decoupling of the numerical
difficulties posed by the incompressibility constraint and
the inertial nonlinearities, so that efficient methods can be
developed for overcoming them individually. For example,
the subproblems (2.17) or (2.19) can be reformulated as
quadratic optimization problems with additional linear
constraints. On the other hand, the solution of the sub-
problem (2.18) can be obtained by a least-squares residual
minimization approach, which leads to an unconstrained
nonlinear optimization problem. In either case, robust
solution procedures can be developed whose complexity is
determined primarily by the number of velocity unknowns
in the discretization (rather than by the sum of the velocity
and pressure unknowns), and this aspect alone can lead to
significant computational savings.

The parameters I, and ;1, can be chosen using the
guidelines given for the linear evolution equation (2.9) and
experimental results show that first-order accuracy is
always achievable. The parameter t3 can be used to modify
the stability characteristics of the discretization and, for this
purpose, it seems advisable to restrict its range to the inter-
val (0, 1) in order that the linear parts of the operators in
(2.17)-(2.19) remain positive-definite. Apart from this
Bristeau, Glowinski, and Periaux [2] have noted that with
the choice of 8 such that I, 8 = A,(1 - 0), the same linear
elliptic operator, appears in the subproblems (2.17) or
(2.19) and in the subproblem (2.18), respectively. Thus for

INCOMPRESSIBLE VISCOUS FLOW SIMULATION 387

this choice the storage costs in the problem can be reduced
by a factor of two. Unfortunately, this economy is not
obtained when a discontinuous pressure basis is used, in
view of the somewhat different substructuring technique
that is required in each of the two subproblems in order to
eliminate the nodal variables in the interior of the elements.
However, the other computational advantages of discon-
tinuous pressure basis functions can more than compensate
for this loss in storage efficiency, particularly since in any
case, with the use of suitable data structures and solution
algorithms, the overall storage requirement can be made
quite small.

III. In order to obtain the weak form of the subproblems
(2.17)-(2.19), we consider the following function spaces

V= {uE(H’(~))~,u=u, onr,},

@= {pEL2(SZ)(orL2(R)/B,ifr2=@)},

An important particular case of V is

V, = (II E (H1(L2))n, u = 0 on r,}.

We now use the following notation to denote the bilinear
forms ai (., .) defined on V x V, and b(., .) defined on
V x @, respectively,

a; (u, w) = .r (qu . w + yv Vu:Vw) dx, R

b(w,q)= -[(V.w)qdx.
R

Also consider the trilinear form c(., ..
V x V x V,, given by

for i= 1, 2,
(2.20)

(2.21)

, .) defined on

c(u, v, w) = J, (u .Vv) . w dx. (2.22)

Finally, we let (., .) denote the duality pairing between V
and its dual space V* (and (., .),, denote the duality
pairing between the corresponding trace spaces on r,), so
that

(f,w)=Snf.wdx and (g.w),z=jrlg-wdx. (2.23)

The weak form of the subproblems (2.17)-(2.19) that
must be solved in order to advance the solution at each time
step is then given as follows: First we solve for u* E V and
p* E @ from

a$*, w) + NW, P*)
= (f, w) + u,(‘-“)(u”, w)

- C(UX, un, w) + (g, w>,, VW E v,, (2.24a)

b(u*, 4) = 0, Vqe@, (2.24b)

then solve for u** E V from

u:‘--@(u**, w) + c(u**, u**, w)

= (f, w) + a;yu*, w)

-Ww,P”)+ <fAW>f-,> VW E v,, (2.25)

and, finally, solve for II”+ ’ E V and p”+ i E @ from

u$ln+ I, w)+b(w,pn+‘)

= (f, w) + u;(lpO)(u**, w)

- ctu**, u**, w) + (g, w>r*, VW E V,, (2.26a)
n+l b(u ,q)=O, Vqe@. (2.26b)

IV. For computational purposes, the unknowns are
expanded in a finite element basis; this basis also provides
the test functions used in Galerkin’s method to obtain the
discretized equivalents of (2.24)-(2.26). For the two-dimen-
sional test examples described in this paper, we have used
the Crouzeix-Raviart quadrilateral element (the Q2 x Pi
pair in the notation of Gunzburger [S]). Here, the velocity
is approximated by continuous piecewise biquadratic func-
tions, and the pressure is approximated by discontinuous
piecewise linear functions. The velocity unknowns in each
element are the nodal values at the corners, along the
midpoint of each edge, and at the centroid. The pressure
unknowns in each element are the nodal value and the
derivatives at the centroid. The various integrals in
(2.24)-(2.26) are evaluated elementwise, and in Cartesian
coordinates, the use of a three-point Gaussian quadrature
rule on each element is sufficient for obtaining an accuracy
consistent with the order of the polynomial approximation
used in the discretization.

For solving (2.24), and similarly for (2.26), we use a
reduced basis set on each element, in which the velocity
unknowns at the centroid are eliminated from the com-
ponents of (2.24b) at the centroid, and the pressure
derivative unknowns are eliminated from the components of
(2.24a) at the centroid. The substructuring performed in this
fashion is stable and reduces the number of velocity
unknowns on each element from 18 to 16, and the number
of pressure unknowns from 3 to 1, without affecting the
accuracy of the resulting solution in any way. The resulting
bilinear form for the Stokes operator in the reduced velocity
basis remains symmetric and positive-definite.

388 RAMESH NATARAJAN

The evaluation of the stiffness matrix in (2.25) does
not involve either the pressure basis functions or the
incompressibility constraint. Therefore, in this case, the
centroid velocity unknowns are stably eliminated from the
components of the momentum equation at the centroid.
However, as noted earlier, even if 0 is chosen such that
A,0 = A,(1 - 6), the resulting stiffness matrix for the bilinear
Stokes operator a(., .) is no longer equivalent to that
obtained in the subproblems (2.24) and (2.26) in view of the
fact that the element level substructuring for the two
operators is performed differently.

3. NUMERICAL METHODS

I. The solution of the subproblems (2.24) and (2.26) is
obtained by a reformulation as a saddle-point optimization
problem for an augmented Lagrangian. We assume that the
discrete form of these equations is given by

A,U+BTP=b,, (3.1)

BU= b,, (3.2)

where UE RN, P E WM are the velocity and pressure nodal
unknowns respectively, A i is a N x N symmetric, positive-
definite matrix, and B is a M x N matrix. These equations
are the Kuhn-Tucker
variational problem,

min
YE@

where

conditions for the saddle-point A,=Al+rBTB.

Since the matrix operator BA; ‘BT in (3.8) is symmetric,
positive-definite, its solution can be obtained by a conjugate
gradient algorithm. This algorithm will only require the
action of BA;‘BT on a vector, and the only difficulty here
is computation of A;’ I/for arbitrary VE aN. However, this
is equivalent to solving a matrix equation with the
symmetric, positive-definite matrix A,, which can also be
obtained by a conjugate gradient algorithm. The overall
method, therefore, takes the form of a nested “inner-outer”
iteration procedure, in which performance of the inner itera-
tion is enhanced by the fact that the initial guess provided
to it improves with the progress of the outer iteration.

y(v, Q)=$% v, f’?,-(b,, V),+(BV-b,, Q)M. (3.4)

For computational purposes, this Lagrangian is augmented
by a quadratic term involving the constraint condition (3.2)
to obtain

%(V,Q,=$(A, v, v)N-(bl, v)N

+ (BV-b,, Q),w+;r IIBV-b& (3.5)

where r is a specified positive number. From the
Kuhn-Tucker conditions for this Lagrangian, it is seen that
the additional term vanishes at the saddle-point optimum,
leading to exactly the same solution at the optimum as that
obtained from the original Lagrangian in (3.4). However,
the inclusion of this term improves the convergence of
iterative dual minimization algorithms for solving (3.4), for
reasons that we will consider briefly below (see [1, 71 for an
extensive discussion). In addition, moderate values of r are
sufficient for this benefit to be realized, so that the difficulties
associated with numerical ill-conditioning of the matrix

equations are not encountered. These difficulties, for exam-
ple, would arise when penalty methods are used for solving
(3.1) and (3.2), where a “cost” function that is very similar
to (3.5) (but with Q set to zero) is directly minimized,
with the constraint condition being enforced by heavily
penalizing deviations of the solution from it by using very
large values of r in the cost function.

The dual minimization approach to the saddle-point
problem for the augmented Lagrangian (3.5) is given by

(3.6)

where

From (3.5), it follows by explicit computation that the
minimization problem in (3.6) is equivalent to solving the
matrix equation

BAp’BTP= BA-‘b r r 1 -b 2, (3.8)

where we have denoted

(3.9)

There are two important issues that arise in our
implementation of this solution algorithm, which we discuss
in some detail below.

First, the use of a discontinuous basis for the pressure
approximation enables the matrix A, to be directly assem-
bled and explicitly generated, without having to separately
form the A, and B matrices and carry out the various
required matrix operations. This is because the nonzero
contributions to each row of B (equivalently, each column
of BT) can be independently generated and fully assembled
from within a given element, so that the contribution of BTB
to the matrix A, in (3.9) can be computed at the element
level itself, and these contributions can be directly assem-
bled to explicitly obtain the global matrix A,. This explicit

INCOMPRESSIBLE VISCOUS FLOW SIMULATION 389

representation is useful because it allows the incomplete
Cholesky factorization of this matrix to be computed and
used as a preconditioner for it in the inner iteration. In addi-
tion, although it would appear that the explicit computation
of A, is not required for an unpreconditioned algorithm,
where the required matrix-vector products can be carried
out using the form in (3.9) itself, in practice, however, this
would lead to much additional work in each iteration of the
conjugate gradient algorithm.

The second issue concerns the appropriate value for r in
order to obtain the maximum computational efficiency.
From (3.8) the convergence of the outer iteration depends
on the numerical conditioning of the matrix product

B[A,+rBTB]-’ BT-BII+rA,‘BTBIpl A,‘BT. (3.10)

For large values of r, this matrix product is close to the iden-
tity, explaining the effectiveness of the augmented term in
improving the convergence of the outer iteration. At the
same time, however, the condition number of A, increases
with r, affecting the convergence properties of the inner
iteration. This ill-conditioning can be understood by con-
sidering two nearby vectors, with the first lying in the null
space of the matrix B (which consists of all vectors that
satisfy the discrete solenoidal condition) and the second
being outside this null space. It is easily seen from (3.10) that
for sufficiently large values of r, the separation of the output
vectors after premultiplication by A, can be up to a factor of
r jl Bll* over that in the two original input vectors. This
clearly indicates that there is an intermediate optimum
value for r that will balance these two conflicting concerns.
In order to obtain an estimate for this optimum value, we
note from (3.10) that a value of r that is at least as large as
the inverse of the largest eigenvalue of the symmetric, semi-
definite matrix operator A 1’ BTB would seem to be required
for improving the conditioning of the outer iteration. The
magnitude of this largest eigenvalue will depend on the
details of the discretization and on the convergence
tolerance that is used in the solution of the matrix systems
involving Al. However, it can be estimated in a prepro-
cessing step prior to the actual computation by a simple
application of the Power method. In practice, we have
found the values of r obtained in this way to be quite
satisfactory and the performance of the algorithm to be
quite insensitive to large variations in r about the true
optimum.

II. The solution of the nonlinear subproblem (2.18) is
obtained by reformulating it as the problem of determining
the vector that will minimize the least squares norm of the
nonlinear residual. This is a standard optimization problem,
but with a special form that can be exploited to develop
some sophisticated algorithms. The specific algorithm that
we have used is the nonlinear conjugate gradient method

[6, 131 which is simple to program and has low storage
requirements, although it does not have the higher-order
convergence of the Gauss-Newton or the Levenberg-
Marquadt methods that are typically recommended for
such problems in the nonlinear optimization literature
c3, 141.

The overall efficiency of the nonlinear conjugate gradient
algorithm. can be considerably improved by using certain
problem-specific details for some of the critical steps in the
basic algorithm, including in particular, the preconditioning
strategy, the gradient computation, and the line search
minimization. These aspects are discussed in detail below.
We note that a suitable preconditioning is absolutely essen-
tial for the success of least squares residual minimization
algorithms, since the numerical condition number of the
original discrete problem is squared by this reformulation,
thereby increasing the difficulty of obtaining iterative
convergence.

We assume that the discrete form of (2.18) can be written
as

R(U)~A*U+C(U)U-F=O, (3.11)

where U E .?XN is the vector of velocity nodal variables,
R: WN + aN is the nonlinear residual operator, A, is a
N x N symmetric, positive-definite matrix, C is a N x N
matrix representing the convective part of the inertial non-
linearity, and FeWN is the known right-hand side vector.
The explicit dependence of R on the discrete vector U is a
notational convenience, but in practice R is always
evaluated from known quantities by direct integration of the
weak form of the continuous equivalent of (3.11), so that,
for example, the C matrix above is never generated or
stored.

The equivalent preconditioned least-squares residual
minimization problem can then be formulated as finding the
vector UE WN such that

where

min J(V),
VEWN

(3.12)

J(v) = +(A, w, w),

and WE gN is obtained from

(3.13)

A,W=R(V). (3.14)

The requirement that the solution of the minimization
problem (3.12) be identical to the solution of the nonlinear
problem (3.11) is satisfied by replacing A, in (3.13) and
(3.14) by any other preconditioning operator that is an
isomorphism. As such, therefore, the identity operator or

390 RAMESH NATARAJAN

any other suitable self-adjoint operator can be used in its
place, although the problem formulation clearly suggests
that A, is quite appropriate in view of the fact that it is the
Stokes part (with homogenous boundary conditions) of the
nonlinear subproblem (2.18). The maximum benefit from
this particular preconditioning will be realized when the
relative magnitude of the nonlinear terms in (3.11) is small
(equivalently, for small values of either the Reynolds
number or the time step At), when it is practically the exact
inversion of the nonlinear operator.

We note that the evaluation of Wfrom (3.14) requires the
solution of a symmetric, positive-definite, matrix system
involving Al, and this can be obtained by a conjugate
gradient iteration. This gives the algorithm an inner-outer
iteration flavor that is similar to that described previously
for the constrained saddle-point optimization problem,
except that in the present case, the outer iteration uses the
nonlinear conjugate gradient algorithm with line search
minimization.

The description of the nonlinear conjugate gradient algo-
rithm for (3.12) is given below, in which the PolakkRibiCre
formula is used for performing the solution updates in each
iteration [11. In this algorithm the vectors VE L%?~ denote
solution iterates, G EL’&?~ denote gradient directions, and
H E $A? N denote search directions.

1. Initialization. Given V,,.

(a) compute G, from A,Go = J’(VO).

(b) set Ho+- G,.

2. For n > 0 until convergence do.

(a) line search minimization, compute
1, = arg min, E ti J(V, - AH,).

@I set J-‘,+, + V,,-L,H,,.

(c) computeG,+, from A2G,+,=J’(V,+,).

(d) compute
in = WAG,+ I - GnL G,, I)N/(AzG~, G~)N.

(e) SetHn+l+G,+~+y,Hn.
(f) set n t n + 1 and go to step (a).

3. Termination, Set U + V, + , .

The efficient implementation of this algorithm requires
the consideration of some problem-specific aspects, and in
particular, the three most important among these are
discussed in some further detail below.

First, consider the computation of J(V) that is required
for the line search minimization in step 2(a) above. Using
the definition, this is a two-step process, in which, given V,
we first solve for W from (3.14), and then compute J(V)
using the definition in (3.13).

Second, it is clear that each evaluation of J(V) as outlined
above is quite expensive, since it requires an inner iteration

for solving (3.14). However, the overall number of such
evaluations that are required in the line search minimization
(for different values of A) can be reduced by using the fact
that R is a quadratic function of its arguments. Therefore,
an explicit expression for f(A) E .J(V - ;1H) can be derived
which is a quartic polynomial in A, with coefficients that can
be computed from just three inner iterations. To see this,
note that from (3.11) we can write

B(A) = R(V- AH) = R,(V) - ;IR1(V, H) + i”R,(H),
(3.15)

where the terms on the right-hand side are defined as

R,=A,V+C(V)V-F,

R, = A,H+ C(V)H+ C(H) V, R2 = C(H) H.

Thus, from (3.14), we can write

-w^(+A,%(/Z)= W,-LW,+A*W,,

where

A, W,= R, for i=O, 1, 2,

(3.16)

(3.17)

(3.18)

so that only three inner iterations are required to completely
determine YV. Furthermore, since f is a quadratic
functional of w, we can use the decomposition in (3.17) to
obtain an explicit quartic polynomial in ;1 of the form

f(n) = Jo - 1J, + L*J, - 13J3 + /l”J,, (3.19)

where

Jo = tbh Wo, W,,),v, JI = (A2 WI > W‘,)N,

J,=;(A,W,, w,)N+ (AZWO, Wz),“‘, (3.20)

J3 = (A2 W, > W2)m J4 = i(A, W,, W,),.

The value of il that minimizes f(A) in (3.19) can now be
efficiently computed using Newton’s method, i.e., starting
from an initial guess A,, the iteration

Ai+,+[y]-‘[~] (3.21)

is performed until the desired convergence is obtained.
Third and finally, we have the computation of the

derivative J’(V), which can be obtained from the basic
definition using the chain rule. Consider a perturbation to
the velocity nodal unknowns in the form V + 6 V, where in
order for 6 V to be admissible perturbation it should vanish
at those nodal points where the values of V are specified, i.e.,

INCOMPRESSIBLE VISCOUS FLOW SIMULATION

at the nodes where Dirichlet boundary conditions
enforced. Then, neglecting higher order terms in
perturbation, we have

are
the

4. NUMERICAL EXPERIMENTS

I. The numerical results described here were obtained
on an IBM RS/6000, Model 320 workstation using the
XLF FORTRAN compiler with full optimization. The
problem sizes and various other parameters in these
examples were generally chosen so that the program
execution time was between l-10 h.

(J’(V), sv,= (A,SW, WIN. (3.22)

However, from a Taylor’s series expansion of (3.14), we
obtain, after neglecting higher order terms,

A, 6W= R’(V) SV, (3.23)

which when substituted into (3.22) yields

(J’(V), SV), = (R’(V) . sv, W), (3.24)

and, since the perturbation 6V is arbitrary, we obtain

J’(V) = R’(V)’ W. (3.25)

The use of this formula would seem to require the explicit
evaluation of the matrix R’(V), but we note that the pertur-
bation vector 6 V in (3.22) can be taken in the direction of
the various unit vectors in gN, and in each case, using
(3.24), this allows the component of J’(V) in the direction of
that particular unit vector to be directly evaluated from the
known quantities on the right-hand side. For general
nonlinear functions, the vector R’(V) . SV can be obtained
from a difference formula, but in the present case an exact
evaluation is possible because of the simple quadratic
nonlinearity in R(V), i.e.,

R’(V).6V=A,6V+C(V)6V+C(6V)V. (3.26)

Again, similar to the discussion following (3.1 l), the vector
J’(V) can be directly generated from the weak form of the
continuous equivalent of (3.24), by noting the equivalence
between unit vectors in aN and the finite element test
functions that are used as basis vectors for the discrete
approximation of the function space V,.

Finally, we note that the computation of the gradient
direction will require two inner iterations, the first to obtain
W which is used in (3.24) to compute J’(V), and following
this, the second to obtain Gin step 2(c) of the algorithm. We
note, however, that W is also required in the line search
minimization routine (where we had denoted it as W,) so
that this computation need not be repeated if the results are
saved. In summary, therefore, an entire iteration of the outer
nonlinear conjugate gradient iteration algorithm can be
carried out with just four different inner preconditioned
conjugate gradient iterations requiring the solution of
matrix systems involving A, for various right-hand sides.

391

We briefly remark on the stopping condition for detecting
convergence in the inner conjugate gradient iterations.
These invariably involve the velocity variables that are
known to have an O(1) scaling, so that for this case
convergence is assumed if rk, the residual at the inner
iteration k satisfies a condition of the form

IIrk {to11 JN, to12 IIroll2>~ (4.1)

where we typically set tol, = 1O-6 and tol, = lo-*. The use
of a relative tolerance criterion in addition to the more
usual absolute tolerance criterion is sometimes helpful in
preventing the stagnation of the outer iteration.

11. Following Kim and Moin [9], the following exact
solution of the Navier-Stokes equations was used to check
the accuracy and consistency of the time discretization,

u = C -cm x sin y e, + sin x cos y e,] exp(- 2vt),

P = - $(cos 2x + cos 2~) exp(-4vt).

(4.2a)

(4.2b)

These calculations were performed on the rectangular
domain (0, x) x (0, rc), and the exact solution from (4.2) at
t+i,dt,t+(I,+A,)dt,andt+dt,respectively,wasused
to provide the boundary conditions for three individual
operator equations. In Fig. 1, we show the maximum

o.ooL’, 0 ’ ’ 1
0 5 10 15 20

0.00”. 8 I ” ” ‘1 1
0 5 10 15 20

FIG. 1. Relative errors in time-integration for the model problem with
solution given by Eq. (4.2).

392 RAMESH NATARAJAN

relative error Ill-uII m /[lull o. (where B is the computed solu-
tion) as a function of time, for various values of At on two
different uniform meshes. From this the overall method is
seen to be consistent, with the relative error (for fixed At)
decreasing with the spatial refinement of the mesh. In addi-
tion, the results indicate that the scheme is at least first order
with respect to time for a fixed spatial discretization.
However, as Kim and Moin [9] have noted for the scheme
in their paper, second-order convergence might be obtained
by simultaneous time and space refinement, at a fixed
Courant number. Another difficulty here, is the way in
which time-dependent boundary conditions are treated
in the operator split equations, so that higher order
convergence might also be obtained for problems with
time-independent boundary conditions.

III. The second test example is the well-known driven
cavity problem and, following Soh and Goodrich [151, we
have considered the time evolution of the flow from an
initial quiescent state. Here initially, At = 0.05, and this
value was doubled every 40 time steps up to a maximum
value of 0.5. The time integration was discontinued when
the velocities have stabilized to three decimal place accuracy
for several time steps. All calculations were performed on a
uniform mesh of 16 x 16 elements.

Our results at a Reynolds number of 400 are in excellent
agreement with the computations of Soh and Goodrich
[15]. In Figs. 2aad, the streamlines inidcate the initial
development of a jet-like flow near the surface of the cavity,
which is similar to a Stokes boundary layer, except in the
regions close to the cavity walls where the flow must turn
around. The fluid velocities of the return flows in the interior
of the cavity are much weaker at this point. As the Stokes
layer thickens, the center of the eddy which initially moves
laterally towards the right wall, begins to retract and move
obliquely towards its ultimate steady location, which is

1.0 r

x 0.5

Re=400
16x16 mesh

0.0
5 0.0 0.5 1.0

”

(

-J1/0.037
t =2

-Jl/o 009
t=16

-J1/0.053
t=4

FIG. 2. Uniformly spaced streamfunction contours for driven cavity
problem, Reynolds number 400.

slightly to the upper right of the center of the cavity. By our
earlier criterion, this ultimate steady flow is attained by
about t = 45.

The variation with time of the horizontal velocity u along
the vertical centerline of the cavity is plotted in Fig. 3a, and
this shows the thickening of the Stokes boundary layer, as
well as the increase in the intensity of the return flow in the
lower portion of the cavity with time. The variation of the
vertical component of the velocity u along the horizontal
centerline of the cavity is plotted in Fig. 3b, which shows
that significant flows are encountered here only after about

0.5

0.0

1

FIG. 3. (a) Variation of u along vertical centerline of the cavity. (b) Variation of u along horizontal centerline of cavity. Reynolds number 400.

INCOMPRESSIBLE VISCOUS FLOW SIMULATION 393

-q//o.034
t=2

w 0 0
-Jr/o.047
t=4

FIG. 4. Uniform spaced streamfunction contours for driven cavity
problem, Reynolds number 1000.

t = 4. It also shows the asymmetry of the ultimate steady
flow, with the stronger downward velocity in the right
portion of the cavity.

We have also carried out a computation at a Reynolds
number of 1000, and the streamline plots at various times
are shown in Figs. 4a-d, and the variations of u and u along
the vertical and horizontal channel centerlines, respectively,
are shown in Figs. 5a, b. These flows are somewhat more
intense, although the results are qualitatively similar to that
obtained at the lower Reynolds number. Here the ultimate
steady flow is obtained at about t = 88. The steady value of

Re=lOOO
16 x 16 mesh

the stream function at the center of the primary eddy is
around -0.13, which compares with a value of about
-0.12 reported by various other investigators, using quite
different methods (as reviewed in [9]).

IV. The final test example is that of a uniform flow past
a cascase expansion, for which the stationary flows have
been previously considered by Milos, Acrivos, and Kim
[lo]. The computational domain for this problem is
the rectangular region {0,20} x (0, 2). The boundary
conditions used are

v = 0, 0, YG 1,

u= U(y), { y>l,
at x = 0, (4.3a)

v = 0,
al4
- = 0,
aY

at y = 0, 2, (4.3b)

au au v---=0, -=o, ax ax at x= 20, (4.3c)

Here, the boundary conditions (4.3b) at y = 0 and y = 2 are
obtained from symmetry considerations, and outflow
boundary conditions are used at x = 20. We note that the
location of this outflow boundary is sufficiently distant that
it does not affect the upstream details of the flow field for the
values of the Reynolds numbers at which our computations
were performed. The inlet flow velocity is taken in the form
of a uniform flow mediated by a boundary layer (of
thickness 0.25) at the walls of the channel expansion, i.e.,

L 2r] - U(y)= 2?j3 + q4, 1 < y d 1.25,
1 y > 1.25, (4.4)

where ye = 4(y - 1). The computational mesh consisted of 20
elements of uniform size in the y direction, and 80 elements

Re =I000
I6 x I6 mesh

(b)

0.0 0.5

‘E

FIG. 5. (a) Variation of u along vertical centerline of the cavity. (b) Variation of u along horizontal centerline of cavity. Reynolds number 1000.

RAhIESH NATARAJAN

2.0

1.0

0.0

0 10

0

:

FIG. 6. Streamline contours for the flow evolution in the symmetric
cascade expansion for Reynolds number 50, shown at the values of time 0,
10,20,30,40,50,60.

in the x direction which were graded in order to concentrate
elements in the expansion region.

The steady Stokes solution was used as the initial
condition for a time-dependent calculation at a Reynolds
number of 50 with dt = 1.0. The streamlines in Fig. 6 show
the initial formation of recirculation region and its subse-
quent elongation with time. The corresponding evolution of
the vorticity contours are shown in Fig. 7.

In separate calculations at a Reynolds number 100 for
this problem, we have obtained results for the steady values
of the eddy reattachment length, and for the location of the
eddy center and the magnitude of the stream function at this
center, that are all in good agreement with the results of
Milos, Kim, and Acrivos [lo], obtained using very different
methods.

FIG. 7. Corresponding vorticity contours at the same times as in
Fig. 6.

5. FUTURE WORK

We envisage three main directions for our future work, as
briefly outlined below:

1. The present scheme is being extended to study fully
three-dimensional test problems, where its low storage and
computational requirements will make it advantageous
over many other competing methods.

2. The test applications studied here all involve
transient flows that approach an ultimate steady state. We
are developing test applications that will consider flows in a
parameter range where limit cycles and other more
complicated time-dependent behavior might be found.

3. The performance of the numerical algorithms
described here on vector and parallel computers is of con-

siderable interest. In general the preconditioned conjugate
gradient method, which is the main computationally
intensive kernel in the program, is very well suited for the
architectures of these computers. However, the incomplete
factorization preconditioner used in the current program
may be inappropriate here because of its highly recursive
and serial nature, although in previous work [111, we have
shown that this preconditioner can be implemented on a
shared-memory parallel computer, using a run-time
analysis to automatically identify and schedule the parallel
work. In order related work [12], we have implemented a
domain-decomposition version of the basic conjugate
gradient method on a message-passing parallel computer,
and this work is being extended to the development of
effective preconditioning strategies on the same platform.

2.

3.

4.

5.

6.

I.

8.

REFERENCES

Methods (Academic Press, New York, 1982).

9.

10.

11.

12.

13.

14.

15.
1. D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier

INCOMPRESSIBLE VISCOUS FLOW SIMULATION 395

M. 0. Bristeau, R. Glowinski, and J. Periaux, Comput. Phys. Rep. 6,73
(1987).

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained
Optimization and Nonlinear Equations (Prentice-Hall, Englewood
Cliffs, NJ, 1983).

E. Fernandez-Cara and M. M. Beltran, Numer. Math. 55, 33 (1989).

V. Girault and P. A. Raviart, Finite Element Approximation of the
Nauier-Stokes Equafion (Springer-Verlag, New York, 1986).

R. Glowinski, H. B. Keller, and L. Rheinhart, SIAM J. Sci. Stat.
Compur. 6, 793 (1985).

R. Glowinski and P. Le Tallec, Augmented Lagrangian Melhods and
Operator-Splitling Methods in Nonlinear Mechanics (SIAM,
Philadelphia, 1989).

M. D. Gunzburger, Finite Element Methodsfor Viscous Incompressible
Flows (Academic Press, New York, 1989).

J. Kim and P. Moin, J. Compul. Phys. 59, 308 (1985).

F. S. Milos, A. Acrivos, and J. Kim, Phys. Fluids 30, 7 (1987).

R. Natarajan, J. Compuf. Phys. 94, 352 (1991).

R. Natarajan and P. Pattnaik, J. Comput. Phys. 100, 396 (1992).

J. L. Nazareth, SIAM Reo. 28, 501 (1986).

J. L. Nazareth, SIAM Rev. 22, 1 (1980).

W. Y. Soh and J. W. Goodrich, J. Comput. Phys. 79, 113 (1988).

581/lW/2-13

